かけ算九九を使って・・・(令和6年度研究発表会に向けて①)

公開日: 2024年12月31日火曜日

 算数科の津川です。

 今年度、算数科では数学的価値に焦点を当てて研究を進めてまいりました。

 本校算数科では、『数学的価値』について、子どもの問題解決を導く働きをもち、数学的な見方・考え方や解決方法などに対するそれぞれの捉えと定義しています。


例えば、「かけ算九九(1×1から9×9まで)の答えを全部たすと何になる?」という問題について、皆さんはどのように答えを導き出すでしょうか?

私は、1の段の和が45になっていることから2の段を調べてみると90となり、それぞれの段の和が45の段になっていることに着目し、真ん中の5の段の和である225の9個分としてその答えを導き出しました。

その問題を、別の人に出してみると、九九表の真ん中の25に着目して、25の81個分として求めていました。

違う考え方ですが、均して答えを求める平均の考えを用いているという共通点があります。

おそらく、他の人に聞いてみたらまた別の考え方に出合えたことでしょう。

自分自身がどのような解き方をしたのか振り返るきっかけをつくったのは、他者の考えに出合ったときです。他者の考えを知ることで、この問題における新たな選択肢や解き方をやや抽象的に眺めることができるようになりました。また、自分には無かった「表」を用いて考える方法にも出合いました。


・それぞれの段の和を求めたら45の倍数になっている

・平均の考え方を使ってその和を求める

という数学的な見方・考え方


・かけ算九九表から真ん中の数字を見つけだす

という解決方法

とそれぞれの数学的価値を見いだすことができると思います。


今回、この例を出したのは来年に向けて面白い題材でもあるなと感じたからです。

ぜひ皆さんも新年を迎えるにあたり計算していただけると、素敵な数字に出合えるかと思います。


今回は数学化については取り上げませんでしたが、この1年「数学化」に伴う数学的価値について研究を進めてまいりました。

来年はすでに、1月2月とその研究の成果を発表させていただくチャンスがあります。


1月18日の全国算数授業研究会の熊本大会では、この数学化に焦点を当てて、5年生「速さ」の授業をさせていただきます。

そして数学的価値については、「数学のよさ」に焦点を当てて午後のワークショップで提案させていただく予定です。


さらに、数学化から始まり、それぞれの数学的価値を実感させていいく授業を2月14日にあります、本校の研究発表会で提案させていただく予定です。

ここのブログでは、少しずつ研究発表会でさせていただく授業についての紹介を綴っていくつもりです。

今回させていただく予定の実践は、「つまようじタワーを設計しよう!」です。

まずは、次の投稿でこの実践の子どもたちに実感させたい数学的価値についてお話しできればと思います。

最後までお読みいただきありがとうございました。


  • ?±??G???g???[?d????u?b?N?}?[?N???A

0 件のコメント :

コメントを投稿